Explosion hazards of triple hydrocarbon-hydrogen – air mixtures

1

S.M. Frolov, S.N. Medvedev, V.Ya. Basevich, F.S. Frolov

N.N. Semenov Institute of Chemical Physics, RAS, Moscow, Russia

Background

- Cheng R.K., Oppenheim A.K. Autoignition in methane-hydrogen mixtures // Combustion and flame. 1984. 58. P. 125.
- S. Thiessen, E. Khalil, G. Karim, The autoignition in air of some binary fuel mixtures containing hydrogen// International journal of hydrogen energy. 2010. V.35. P.10013.
- Karim G.A. Combustion in gas fueled compression: ignition engines of the dual fuel type // Journal of gas turbine and power. 2003. V. 215. P. 827.
- Lyn McWilliam, Combined hydrogen diesel combustion: an experimental investigation into the effects of hydrogen addition on the exhaust gas emissions, particulate matter size distribution and chemical composition / A thesis submitted for the degree of Doctor of Philosophy. 2008. – P. 1.

• <u>No found</u> investigations accorded to influence of hydrogen on selfignition and combustion of heterogeneous hyrdocarbon droplets in air.

Governing equations

- System of equations for gas and liquid phases:
 - Continuous equation
 - Energy conversation equations
- Applying additional conditions
 - Multi-components diffusion
 - Evaporation and heat expansion

Checking hydrogen-air mixtures

Selfignition

Flame velocity

Kinetic scheme

• 108 species, 1083 reversible reactions

Stoichiometric n-decane-air mixture. Initial conditions: $T_0 = 588$ K, $P_0 = 0,1$ MPa.

Self-ignition single droplet

Single n-heptane droplet in air: initial droplet diameter $d_0 = 0,70$ mm, initial pressure $P_0 = 0,1$ MPa. Points – experiment (*Moriue O.* 2000), lines – calculations.

Selignition single n-heptane droplets at pressure P = 0,1 MPa. Experiments *Takei M.* 1993, *Niioka T.* 1994.

$d_{0,}\mu\mathrm{m}$	<i>Т₀</i> , К	<i>t_{ind}</i> , s	
		Exp.	Calc.
700	1000	0.30	0.18
1000	960	0.58	0.27

Droplet combustion

Initial conditions: $d_0 = 0.91$ mm, $T_0 = 1093K$, $P_0 = 0.1$ MPa. Points - experiment (*Moriue O*. 2000), line – calculation.

Droplet combustion

n-heptane droplet system in air: $d_0 =$ 700 mcm, $T_{g0} =$ 1000 К и $\Phi =$ 1 Curves – calculation, points – experiments (*Tanabe M.* 1995, *Tanabe M.* 1996, *Kobayasi K.* 1955)

n-heptane droplet system in air. Initial conditions: $T_{g0} = 1000$ K, $P_0 = 2,0$ MPa and $\Phi = 1$

Influence of H₂ on selfignition

Homogeneous stoichiometric n-heptane – air mixture. Initial pressure $P_0=1,5$ MPa

Influence of H₂ on selfignition

n-heptane

 $d_0 = 60 \text{ mcm}, \Phi = 1, P_0 = 2 \text{ MPa.}$ Solid curves – mixture with 7,5% H₂ addition, dot lines – with 0% H₂

Influence of H₂ on selfignition

(a)

(b)

Predicted time histories of the normalized mass contents of n-heptane vapor (a) and hydrogen peroxide (b) around a drop in uniform stoichiometric n-heptane drop suspension at different initial volumetric hydrogen content: 1 - 0%, 2 - 7.5%, and 3 - 14.5%; drop diameter 60 , $P_0 = 2$ MPa.

Detonation ability

- Characteristic time $t^* = 100 \text{ mcs}$
- Initial conditions $P_0 = 3,0$ MPa, $T_0 = 1500$ K, $d_0 = 10$ mcm

Detonation ability

- $1 H_2 = 0.0\%_{vol}, \psi = 0.50;$
- $2 H_2 = 0,0\%_{vol}, \psi = 0,25;$
- $3 H_2 = 4,3\%_{vol}, \psi = 0,0$ 3000 - 1 M 2500 - 7 M 2500 - 7M 2500 -

Conclusions

- We study self-ignition of gas and droplet hydrocarbonhydrogen-air mixtures.
- Detailed reaction mechanism of n-decane oxidation is used.
- At temperature less than 1050 K hydrogen inhibits selfignition of hydrocarbons.
- At temperature higher than 1050 K hydrogen promotes selfignition of hydrocarbons.
- These findings are important for hydrogen safety issues and applications.
- Quantity estimations of detonation ability are defined in heterogeneous mixture with different pre-evaporated fuel levels and hydrogen additions.