

Flowfield Characterization of a Rotating Detonation Engine

COMBEX, Schladming, Austria, 4-8 March 2013

Andy Naples, Innovative Scientific Solutions Inc. John Hoke, Innovative Scientific Solutions Inc. Scott Theuerkauf , Air Force Institute of Technology Rob Fievisohn , Air Force Research Lab Rachel Russo , Air Force Research Lab Fred Schauer , Air Force Research Lab

Rotating Detonation Engine (RDE)

- Pressure Gain Combustion
- Single initiation event
- Steadier outlet flow than PDE
- High cycle rates
- High power density
- Mechanically simple

*Video courtesy of K. Kailasanath, Naval Research Laboratory

RDE Flow Modeling

- Fluid dynamic & Thermodynamic models
 - Determine efficiency, exit flow state
 - Validation of flow structure is key

***Nordeen, C.A., et al., *Thermodynamic Modeling of a Rotating Detonation Engine*, in *49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition*. 2011: Orlando, Florida. p. 1-15.

- Capture high speed video of operating RDE
 - Chemiluminescence
- Determine basic flow structure
- Measure angles of notable structures

Testing Setup

- Modified RDE developed at AFRL
 - Quartz outer wall
 - Aft end ignition $(H_2/O_2 \text{ detonation})$
 - -95% H₂ + 5% C₂H₄ Fuel mixture (mass basis)

150mm RDE Cross-section

Aft End Ignition

RDE Operation

High Speed Video: 33000fps, 19.5µs exposure

Average Intensity

- Tracked detonation wave
- Averaged light intensity
- Applied false color to images

2D RDE Picture Conversion

- Use window within center 10cm of video
- Assume parallel light, optically thin annulus
- Quartz refraction correction
- RDE "unwrapping" to 2 dimensions

2D RDE Construction

- Crop small portion of converted video
- 10 frames for full lap

• • •

Distance Traveled by detonation between camera frames

Measured Angles

Measured Angles

Average Intensity Result

Measured Angles

Average Intensity Result

Abnormal behavior

- Some operation was different than expected
 - Wave direction changes
 - External startup

Wave Direction Change

External startup

New RDE

New RDE

Conclusions

- Rough flow structure angles measured
- Flowfield is inconsistent
 - Chemiluminescence
 - Mix variation
 - Plenum dynamics, mixing striation
 - Detonation channel geometry
 - Volume relief, curvature
- Need better diagnostic techniques
 - PIV, PLIF, Schlieren