LASER INITIATION OF NANOTHERMITES Al/CuO AND Al/Bi$_2$O$_3$

V. G. Kirilenko1, L. I. Grishin2,3, A. Yu. Dolgoborodov1,2,3, and M. A. Brazhnikov1

1N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation
2Joint Institute for High Temperatures of the Russian Academy of Sciences, 13-2 Izhorskaya Str., Moscow 125412, Russian Federation
3National Research Nuclear University MEPhI, 31 Kashirskoe Sh., Moscow 115409, Russian Federation

Abstract: The characteristics of ignition and flame propagation in nanothermites caused by laser pulse radiation have been studied. Al/CuO and Al/Bi$_2$O$_3$, nanothermites manufactured with the use of ultrasonic mixer, have been tested. The samples are ignited by laser with wavelength 808 nm and average power of 3.5 W. For the termites, using two-channel pyrometer, the minimum ignition energy and average burning velocity vs. sample porosity are measured. The effect of compound aging on the sensitivity to the laser pulse has been studied. The results show a strong dependence of the burning rate and initiation energy on the porosity of the samples. Based on the obtained results, the assumptions on the mechanism of combustion reactions in nanothermites exposed to laser radiation, in particular, the assumptions on two stages of the reaction, have been put forward.

Keywords: nanothermites; laser ignition; burning rate; ignition delay

DOI: 10.30826/CE20130115

Figure Captions

Figure 1 The SEM photo of Al/CuO nanothermite; Al particles are grey, CuO particles are white
Figure 2 A target for installing samples before (a) and after (b) the shot
Figure 3 Experimental setup
Figure 4 Typical signals of the control and laser pulses
Figure 5 Selection of duration of the initiating laser pulse; Al/CuO composition: shots Nos. 1839 (a) and 1840 (b)
Figure 6 Typical time-histories of radiation signals at initiation of nanothermites
Figure 7 Effect of Al/CuO powder aging on the results of laser initiation: 1 — flash delay; and 2 — radiant energy
Figure 8 Burning rate and energy of the initiating pulse vs. the porosity of Al/CuO nanothermite: 1 — the results of the present work; 2 — data of [15]; and 3 — data of [13]
Figure 9 The “dark” phase under initiation of Al/CuO termite (shot No. 1859)

Table Captions

Table 1 Thermodynamic properties of termites according to [6]
Table 2 The shapes and sizes of nanopowder particles
Table 3 Sensitivity of nanothermites to mechanical shock, friction, and ESD [18]
Table 4 Main parameters of a laser pulse
Table 5 The results of laser initiation of nanothermites

Acknowledgments

This work was financially supported by the Fundamental Research Program of the Presidium of the Russian Academy of Sciences No. 6 “New approaches to the creation and study of extreme conditions of matter” and the Russian Foundation for Basic Research project No. 16-29-01030.
References

Received November 21, 2019

Contributors

Kirilnenko Vladimir G. (b. 1956) — Candidate of Science in physics and mathematics, senior research scientist, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; vladkiri@gmail.com

Grishin Leonid I. (b. 1993) — research engineer, Joint Institute for High Temperatures of the Russian Academy of Sciences, 13-2 Izhorskaya Str., Moscow 125412, Russian Federation; Ph.D. student, National Research Nuclear University MEPhI, 31 Kashirskoe Sh., Moscow 115409, Russian Federation; lenya-grishin@mail.ru

Dolgoborodov Alexander Yu. (b. 1956) — Doctor of Science in physics and mathematics, chief research scientist, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Str., Moscow 119991, Russian Federation; head of laboratory, Joint Institute for High Temperatures of the Russian Academy of Sciences, 13-2 Izhorskaya Str., Moscow 125412, Russian Federation; Ph.D. student, National Research Nuclear University MEPhI, 31 Kashirskoe Sh., Moscow 115409, Russian Federation; lenya-grishin@mail.ru

GORENIE I VZRYV (MOSKVA) — COMBUSTION AND EXPLOSION 2020 volume 13 number 1